Cargando…
Hyperspectral Image Classification with Spatial Filtering and ℓ(2,1) Norm
Recently, the sparse representation based classification methods have received particular attention in the classification of hyperspectral imagery. However, current sparse representation based classification models have not considered all the test pixels simultaneously. In this paper, we propose a h...
Autores principales: | Li, Hao, Li, Chang, Zhang, Cong, Liu, Zhe, Liu, Chengyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335939/ http://dx.doi.org/10.3390/s17020314 |
Ejemplares similares
-
SLIC Superpixel-Based l(2,1)-Norm Robust Principal Component Analysis for Hyperspectral Image Classification
por: Zu, Baokai, et al.
Publicado: (2019) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
Spectral-Spatial Feature Extraction of Hyperspectral Images Based on Propagation Filter
por: Chen, Zhikun, et al.
Publicado: (2018) -
Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
por: Dang, Lanxue, et al.
Publicado: (2022) -
A new hyperspectral image classification method based on spatial-spectral features
por: Shenming, Qu, et al.
Publicado: (2022)