Cargando…

A Continuous Object Boundary Detection and Tracking Scheme for Failure-Prone Sensor Networks

In wireless sensor networks, detection and tracking of continuous natured objects is more challenging owing to their unique characteristics such as uneven expansion and contraction. A continuous object is usually spread over a large area, and, therefore, a substantial number of sensor nodes are need...

Descripción completa

Detalles Bibliográficos
Autores principales: Imran, Sajida, Ko, Young-Bae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335958/
https://www.ncbi.nlm.nih.gov/pubmed/28208815
http://dx.doi.org/10.3390/s17020361
Descripción
Sumario:In wireless sensor networks, detection and tracking of continuous natured objects is more challenging owing to their unique characteristics such as uneven expansion and contraction. A continuous object is usually spread over a large area, and, therefore, a substantial number of sensor nodes are needed to detect the object. Nodes communicate with each other as well as with the sink to exchange control messages and report their detection status. The sink performs computations on the received data to estimate the object boundary. For accurate boundary estimation, nodes at the phenomenon boundary need to be carefully selected. Failure of one or multiple boundary nodes (BNs) can significantly affect the object detection and boundary estimation accuracy at the sink. We develop an efficient failure-prone object detection approach that not only detects and recovers from BN failures but also reduces the number and size of transmissions without compromising the boundary estimation accuracy. The proposed approach utilizes the spatial and temporal features of sensor nodes to detect object BNs. A Voronoi diagram-based network clustering, and failure detection and recovery scheme is used to increase boundary estimation accuracy. Simulation results show the significance of our approach in terms of energy efficiency, communication overhead, and boundary accuracy.