Cargando…

Efficient Data Collection in Widely Distributed Wireless Sensor Networks with Time Window and Precedence Constraints

In addition to the traditional densely deployed cases, widely distributed wireless sensor networks (WDWSNs) have begun to emerge. In these networks, sensors are far away from each other and have no network connections. In this paper, a special application of data collection for WDWSNs is considered...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Peng, Fu, Tingting, Xu, Jia, Ding, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335995/
https://www.ncbi.nlm.nih.gov/pubmed/28241415
http://dx.doi.org/10.3390/s17020421
Descripción
Sumario:In addition to the traditional densely deployed cases, widely distributed wireless sensor networks (WDWSNs) have begun to emerge. In these networks, sensors are far away from each other and have no network connections. In this paper, a special application of data collection for WDWSNs is considered where each sensor (Unmanned Ground Vehicle, UGV) moves in a hazardous and complex terrain with many obstacles. They have their own work cycles and can be accessed only at a few locations. A mobile sink cruises on the ground to collect data gathered from these UGVs. Considerable delay is inevitable if the UGV and the mobile sink miss the meeting window or wait idly at the meeting spot. The unique challenge here is that, for each cycle of an UGV, there is only a limited time window for it to appear in front of the mobile sink. Therefore, we propose scheduling the path of a single mobile sink, targeted at visiting a maximum number of UGVs in a timely manner with the shortest path, according to the timing constraints bound by the cycles of UGVs. We then propose a bipartite matching based algorithm to reduce the number of mobile sinks. Simulation results show that the proposed algorithm can achieve performance close to the theoretical maximum determined by the duty cycle instance.