Cargando…
Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition
Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns...
Autores principales: | Munoz-Organero, Mario, Ruiz-Blazquez, Ramona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336010/ https://www.ncbi.nlm.nih.gov/pubmed/28208736 http://dx.doi.org/10.3390/s17020319 |
Ejemplares similares
-
Detecting Steps Walking at very Low Speeds Combining Outlier Detection, Transition Matrices and Autoencoders from Acceleration Patterns
por: Muñoz-Organero, Mario, et al.
Publicado: (2017) -
Human Movement Recognition Based on the Stochastic Characterisation of Acceleration Data
por: Munoz-Organero, Mario, et al.
Publicado: (2016) -
Gait-Based Identification Using Deep Recurrent Neural Networks and Acceleration Patterns
por: Peinado-Contreras, Angel, et al.
Publicado: (2020) -
Deep Physiological Model for Blood Glucose Prediction in T1DM Patients
por: Munoz-Organero, Mario
Publicado: (2020) -
Space-Distributed Traffic-Enhanced LSTM-Based Machine Learning Model for COVID-19 Incidence Forecasting
por: Muñoz-Organero, Mario
Publicado: (2022)