Cargando…
A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals
Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper propos...
Autores principales: | Zhang, Wei, Peng, Gaoliang, Li, Chuanhao, Chen, Yuanhang, Zhang, Zhujun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336047/ https://www.ncbi.nlm.nih.gov/pubmed/28241451 http://dx.doi.org/10.3390/s17020425 |
Ejemplares similares
-
Fusion Domain-Adaptation CNN Driven by Images and Vibration Signals for Fault Diagnosis of Gearbox Cross-Working Conditions
por: Mao, Gang, et al.
Publicado: (2022) -
Advanced Vibration-Based Fault Diagnosis and Vibration Control Methods
por: Song, Xiaohua, et al.
Publicado: (2023) -
Research on Multi-Fault Diagnosis Method Based on Time Domain Features of Vibration Signals
por: Wang, Chao, et al.
Publicado: (2022) -
Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence
por: Zhang, Ran, et al.
Publicado: (2017) -
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
por: Li, Chuan, et al.
Publicado: (2016)