Cargando…
Concurrent inhibition of mTORC1 and mTORC2 by WYE-687 inhibits renal cell carcinoma cell growth in vitro and in vivo
Mammalian target of rapamycin (mTOR)in renal cell carcinoma (RCC) represents a valuable oncotarget for treatment. We here tested the potential anti-RCC activity by a novel mTOR kinase inhibitor WYE-687in vitro and in vivo.WYE-687 was cytotoxic and anti-proliferative to established RCC cell lines (78...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336203/ https://www.ncbi.nlm.nih.gov/pubmed/28257457 http://dx.doi.org/10.1371/journal.pone.0172555 |
Sumario: | Mammalian target of rapamycin (mTOR)in renal cell carcinoma (RCC) represents a valuable oncotarget for treatment. We here tested the potential anti-RCC activity by a novel mTOR kinase inhibitor WYE-687in vitro and in vivo.WYE-687 was cytotoxic and anti-proliferative to established RCC cell lines (786-O and A498) and primary human RCC cells. Yet, it was non-cytotoxic toHK-2 tubular epithelial cells.WYE-687 provoked caspase-dependent apoptosis in the RCC cells. At the molecular level, WYE-687 almost completely blocked mTORC1 (p-S6K1 and p-S6) and mTORC2 (p-Akt Ser 473) activation in both 786-Ocells and primary human RCC cells, where it downregulated both hypoxia-inducible factor (HIF)-1α and HIF-2α expression. Significantly, oral administration of WYE-687 potently suppressed786-O tumor xenograft growth in nude mice. mTORC1/2 activation and HIF-1α/2α expression were also remarkably downregulated in WYE-687-treated tumor tissues. Thus, our preclinical results imply that WYE-687 may have important translational value for the treatment of RCC. |
---|