Cargando…

Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfaci...

Descripción completa

Detalles Bibliográficos
Autores principales: Carey, Benjamin J., Ou, Jian Zhen, Clark, Rhiannon M., Berean, Kyle J., Zavabeti, Ali, Chesman, Anthony S. R., Russo, Salvy P., Lau, Desmond W. M., Xu, Zai-Quan, Bao, Qiaoliang, Kavehei, Omid, Gibson, Brant C., Dickey, Michael D., Kaner, Richard B., Daeneke, Torben, Kalantar-Zadeh, Kourosh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336573/
https://www.ncbi.nlm.nih.gov/pubmed/28211538
http://dx.doi.org/10.1038/ncomms14482
_version_ 1782512220304834560
author Carey, Benjamin J.
Ou, Jian Zhen
Clark, Rhiannon M.
Berean, Kyle J.
Zavabeti, Ali
Chesman, Anthony S. R.
Russo, Salvy P.
Lau, Desmond W. M.
Xu, Zai-Quan
Bao, Qiaoliang
Kavehei, Omid
Gibson, Brant C.
Dickey, Michael D.
Kaner, Richard B.
Daeneke, Torben
Kalantar-Zadeh, Kourosh
author_facet Carey, Benjamin J.
Ou, Jian Zhen
Clark, Rhiannon M.
Berean, Kyle J.
Zavabeti, Ali
Chesman, Anthony S. R.
Russo, Salvy P.
Lau, Desmond W. M.
Xu, Zai-Quan
Bao, Qiaoliang
Kavehei, Omid
Gibson, Brant C.
Dickey, Michael D.
Kaner, Richard B.
Daeneke, Torben
Kalantar-Zadeh, Kourosh
author_sort Carey, Benjamin J.
collection PubMed
description A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.
format Online
Article
Text
id pubmed-5336573
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53365732017-03-09 Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals Carey, Benjamin J. Ou, Jian Zhen Clark, Rhiannon M. Berean, Kyle J. Zavabeti, Ali Chesman, Anthony S. R. Russo, Salvy P. Lau, Desmond W. M. Xu, Zai-Quan Bao, Qiaoliang Kavehei, Omid Gibson, Brant C. Dickey, Michael D. Kaner, Richard B. Daeneke, Torben Kalantar-Zadeh, Kourosh Nat Commun Article A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes. Nature Publishing Group 2017-02-17 /pmc/articles/PMC5336573/ /pubmed/28211538 http://dx.doi.org/10.1038/ncomms14482 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Carey, Benjamin J.
Ou, Jian Zhen
Clark, Rhiannon M.
Berean, Kyle J.
Zavabeti, Ali
Chesman, Anthony S. R.
Russo, Salvy P.
Lau, Desmond W. M.
Xu, Zai-Quan
Bao, Qiaoliang
Kavehei, Omid
Gibson, Brant C.
Dickey, Michael D.
Kaner, Richard B.
Daeneke, Torben
Kalantar-Zadeh, Kourosh
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
title Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
title_full Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
title_fullStr Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
title_full_unstemmed Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
title_short Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
title_sort wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336573/
https://www.ncbi.nlm.nih.gov/pubmed/28211538
http://dx.doi.org/10.1038/ncomms14482
work_keys_str_mv AT careybenjaminj waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT oujianzhen waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT clarkrhiannonm waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT bereankylej waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT zavabetiali waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT chesmananthonysr waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT russosalvyp waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT laudesmondwm waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT xuzaiquan waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT baoqiaoliang waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT kaveheiomid waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT gibsonbrantc waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT dickeymichaeld waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT kanerrichardb waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT daeneketorben waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals
AT kalantarzadehkourosh waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals