Cargando…
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfaci...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336573/ https://www.ncbi.nlm.nih.gov/pubmed/28211538 http://dx.doi.org/10.1038/ncomms14482 |
_version_ | 1782512220304834560 |
---|---|
author | Carey, Benjamin J. Ou, Jian Zhen Clark, Rhiannon M. Berean, Kyle J. Zavabeti, Ali Chesman, Anthony S. R. Russo, Salvy P. Lau, Desmond W. M. Xu, Zai-Quan Bao, Qiaoliang Kavehei, Omid Gibson, Brant C. Dickey, Michael D. Kaner, Richard B. Daeneke, Torben Kalantar-Zadeh, Kourosh |
author_facet | Carey, Benjamin J. Ou, Jian Zhen Clark, Rhiannon M. Berean, Kyle J. Zavabeti, Ali Chesman, Anthony S. R. Russo, Salvy P. Lau, Desmond W. M. Xu, Zai-Quan Bao, Qiaoliang Kavehei, Omid Gibson, Brant C. Dickey, Michael D. Kaner, Richard B. Daeneke, Torben Kalantar-Zadeh, Kourosh |
author_sort | Carey, Benjamin J. |
collection | PubMed |
description | A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes. |
format | Online Article Text |
id | pubmed-5336573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-53365732017-03-09 Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals Carey, Benjamin J. Ou, Jian Zhen Clark, Rhiannon M. Berean, Kyle J. Zavabeti, Ali Chesman, Anthony S. R. Russo, Salvy P. Lau, Desmond W. M. Xu, Zai-Quan Bao, Qiaoliang Kavehei, Omid Gibson, Brant C. Dickey, Michael D. Kaner, Richard B. Daeneke, Torben Kalantar-Zadeh, Kourosh Nat Commun Article A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes. Nature Publishing Group 2017-02-17 /pmc/articles/PMC5336573/ /pubmed/28211538 http://dx.doi.org/10.1038/ncomms14482 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Carey, Benjamin J. Ou, Jian Zhen Clark, Rhiannon M. Berean, Kyle J. Zavabeti, Ali Chesman, Anthony S. R. Russo, Salvy P. Lau, Desmond W. M. Xu, Zai-Quan Bao, Qiaoliang Kavehei, Omid Gibson, Brant C. Dickey, Michael D. Kaner, Richard B. Daeneke, Torben Kalantar-Zadeh, Kourosh Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals |
title | Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals |
title_full | Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals |
title_fullStr | Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals |
title_full_unstemmed | Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals |
title_short | Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals |
title_sort | wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336573/ https://www.ncbi.nlm.nih.gov/pubmed/28211538 http://dx.doi.org/10.1038/ncomms14482 |
work_keys_str_mv | AT careybenjaminj waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT oujianzhen waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT clarkrhiannonm waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT bereankylej waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT zavabetiali waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT chesmananthonysr waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT russosalvyp waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT laudesmondwm waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT xuzaiquan waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT baoqiaoliang waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT kaveheiomid waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT gibsonbrantc waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT dickeymichaeld waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT kanerrichardb waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT daeneketorben waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals AT kalantarzadehkourosh waferscaletwodimensionalsemiconductorsfromprintedoxideskinofliquidmetals |