Cargando…
Detection of statistically significant network changes in complex biological networks
BACKGROUND: Biological networks contribute effectively to unveil the complex structure of molecular interactions and to discover driver genes especially in cancer context. It can happen that due to gene mutations, as for example when cancer progresses, the gene expression network undergoes some amou...
Autores principales: | Mall, Raghvendra, Cerulo, Luigi, Bensmail, Halima, Iavarone, Antonio, Ceccarelli, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336651/ https://www.ncbi.nlm.nih.gov/pubmed/28259158 http://dx.doi.org/10.1186/s12918-017-0412-6 |
Ejemplares similares
-
RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes
por: Mall, Raghvendra, et al.
Publicado: (2018) -
AI-driven drug repurposing and binding pose meta dynamics identifies novel targets for monkeypox virus
por: Patel, Chirag N., et al.
Publicado: (2023) -
Systems biology analysis of gene expression data and gene network reverse-engineering approaches reveal NFAT5 as a candidate biomarker in Inflammatory Breast Cancer
por: Remo, Andrea, et al.
Publicado: (2015) -
MOViDA: multiomics visible drug activity prediction with a biologically informed neural network model
por: Ferraro, Luigi, et al.
Publicado: (2023) -
Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks
por: Tian, Ye, et al.
Publicado: (2014)