Cargando…

Elucidation of the biosynthesis of the methane catalyst coenzyme F(430)

Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilisation of methane through anaerobic methane oxidation. The enzyme employs an ancillary factor called coenzyme F(430), a nickel-containing modified tetrapyrrole that promotes...

Descripción completa

Detalles Bibliográficos
Autores principales: Moore, Simon J., Sowa, Sven T., Schuchardt, Christopher, Deery, Evelyne, Lawrence, Andrew D., Ramos, José Vazquez, Billig, Susan, Birkemeyer, Claudia, Chivers, Peter T., Howard, Mark J., Rigby, Stephen E. J., Layer, Gunhild, Warren, Martin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337119/
https://www.ncbi.nlm.nih.gov/pubmed/28225763
http://dx.doi.org/10.1038/nature21427
Descripción
Sumario:Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilisation of methane through anaerobic methane oxidation. The enzyme employs an ancillary factor called coenzyme F(430), a nickel-containing modified tetrapyrrole that promotes catalysis through a novel methyl radical/Ni(II)-thiolate intermediate. However, the biosynthesis of coenzyme F(430) from the common primogenitor uroporphyrinoge III, incorporating 11 steric centres into the macrocycle, has remained poorly understood although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamisation and carbocyclic ring formation. We have now identified the proteins that catalyse coenzyme F(430) biosynthesis from sirohydrochlorin, termed CfbA-E, and shown their activity. The research completes our understanding of how nature is able to construct its repertoire of tetrapyrrole-based life pigments, permitting the development of recombinant systems to utilise these metalloprosthetic groups more widely.