Cargando…
An Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300
The hybrid brain computer interface (BCI) based on motor imagery (MI) and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not r...
Autores principales: | Long, Jinyi, Wang, Jue, Yu, Tianyou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337786/ https://www.ncbi.nlm.nih.gov/pubmed/28316617 http://dx.doi.org/10.1155/2017/9528097 |
Ejemplares similares
-
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
por: Padfield, Natasha, et al.
Publicado: (2019) -
A Hybrid Brain-Computer Interface-Based Mail Client
por: Yu, Tianyou, et al.
Publicado: (2013)