Cargando…
Sentiment Analysis on Tweets about Diabetes: An Aspect-Level Approach
In recent years, some methods of sentiment analysis have been developed for the health domain; however, the diabetes domain has not been explored yet. In addition, there is a lack of approaches that analyze the positive or negative orientation of each aspect contained in a document (a review, a piec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337803/ https://www.ncbi.nlm.nih.gov/pubmed/28316638 http://dx.doi.org/10.1155/2017/5140631 |
Sumario: | In recent years, some methods of sentiment analysis have been developed for the health domain; however, the diabetes domain has not been explored yet. In addition, there is a lack of approaches that analyze the positive or negative orientation of each aspect contained in a document (a review, a piece of news, and a tweet, among others). Based on this understanding, we propose an aspect-level sentiment analysis method based on ontologies in the diabetes domain. The sentiment of the aspects is calculated by considering the words around the aspect which are obtained through N-gram methods (N-gram after, N-gram before, and N-gram around). To evaluate the effectiveness of our method, we obtained a corpus from Twitter, which has been manually labelled at aspect level as positive, negative, or neutral. The experimental results show that the best result was obtained through the N-gram around method with a precision of 81.93%, a recall of 81.13%, and an F-measure of 81.24%. |
---|