Cargando…

Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.

Water stress is one of the most critical abiotic stresses that restricts growth, development, and alters physiological and biochemical mechanisms of plant. The effects of long‐term water shortage‐induced oxidative stress on morphophysiological parameters, proline metabolic genes, and artemisinin con...

Descripción completa

Detalles Bibliográficos
Autores principales: Soni, Priyanka, Abdin, Malik Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337892/
https://www.ncbi.nlm.nih.gov/pubmed/28286732
http://dx.doi.org/10.1002/2211-5463.12184
_version_ 1782512460631113728
author Soni, Priyanka
Abdin, Malik Z.
author_facet Soni, Priyanka
Abdin, Malik Z.
author_sort Soni, Priyanka
collection PubMed
description Water stress is one of the most critical abiotic stresses that restricts growth, development, and alters physiological and biochemical mechanisms of plant. The effects of long‐term water shortage‐induced oxidative stress on morphophysiological parameters, proline metabolic genes, and artemisinin content were studied in Artemisia annua L. under greenhouse conditions. Plant growth, biomass accumulation, relative water content, and chlorophyll content were reduced under drought. Leaf water potential ranged from −0.3248 MPa to −1.22 MPa in stress conditions. Increased levels of proline accumulation, protein concentration, and lipid peroxidation were detected in water‐stressed plants. Stage‐dependent increases in activity of antioxidants including superoxide dismutase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were observed. The expression of proline biosynthetic genes including pyrroline‐5‐carboxylase synthase1, 1‐pyrroline‐5‐carboxylase synthase2, and 1‐pyrroline‐5‐carboxylase reductase was induced, while the ornithine aminotransferase transcript showed a variable response and the expression of proline catabolic genes including proline dehydrogenase1, proline dehydrogenase1, and proline 5‐carboxylate dehydrogenase was reduced by water stress. Our results indicate that the glutamine pathway is predominant under drought stress in A. annua and a reduction of catabolic gene expression is adopted as a defense strategy in adverse conditions. Higher expression of biosynthetic genes and lower expression of catabolic genes at the preflowering stage confirmed the important role of proline in flower development. Artemisinin content decreased owing to water stress, but the slightly higher amounts were detected in leaves of severely stressed plants compared with moderately stressed plants. The artemisinin content of A. annua might be regulated by controlling irrigation regimes.
format Online
Article
Text
id pubmed-5337892
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-53378922017-03-10 Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L. Soni, Priyanka Abdin, Malik Z. FEBS Open Bio Research Articles Water stress is one of the most critical abiotic stresses that restricts growth, development, and alters physiological and biochemical mechanisms of plant. The effects of long‐term water shortage‐induced oxidative stress on morphophysiological parameters, proline metabolic genes, and artemisinin content were studied in Artemisia annua L. under greenhouse conditions. Plant growth, biomass accumulation, relative water content, and chlorophyll content were reduced under drought. Leaf water potential ranged from −0.3248 MPa to −1.22 MPa in stress conditions. Increased levels of proline accumulation, protein concentration, and lipid peroxidation were detected in water‐stressed plants. Stage‐dependent increases in activity of antioxidants including superoxide dismutase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were observed. The expression of proline biosynthetic genes including pyrroline‐5‐carboxylase synthase1, 1‐pyrroline‐5‐carboxylase synthase2, and 1‐pyrroline‐5‐carboxylase reductase was induced, while the ornithine aminotransferase transcript showed a variable response and the expression of proline catabolic genes including proline dehydrogenase1, proline dehydrogenase1, and proline 5‐carboxylate dehydrogenase was reduced by water stress. Our results indicate that the glutamine pathway is predominant under drought stress in A. annua and a reduction of catabolic gene expression is adopted as a defense strategy in adverse conditions. Higher expression of biosynthetic genes and lower expression of catabolic genes at the preflowering stage confirmed the important role of proline in flower development. Artemisinin content decreased owing to water stress, but the slightly higher amounts were detected in leaves of severely stressed plants compared with moderately stressed plants. The artemisinin content of A. annua might be regulated by controlling irrigation regimes. John Wiley and Sons Inc. 2017-01-25 /pmc/articles/PMC5337892/ /pubmed/28286732 http://dx.doi.org/10.1002/2211-5463.12184 Text en © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Soni, Priyanka
Abdin, Malik Z.
Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.
title Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.
title_full Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.
title_fullStr Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.
title_full_unstemmed Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.
title_short Water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.
title_sort water deficit‐induced oxidative stress affects artemisinin content and expression of proline metabolic genes in artemisia annua l.
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337892/
https://www.ncbi.nlm.nih.gov/pubmed/28286732
http://dx.doi.org/10.1002/2211-5463.12184
work_keys_str_mv AT sonipriyanka waterdeficitinducedoxidativestressaffectsartemisinincontentandexpressionofprolinemetabolicgenesinartemisiaannual
AT abdinmalikz waterdeficitinducedoxidativestressaffectsartemisinincontentandexpressionofprolinemetabolicgenesinartemisiaannual