Cargando…
A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph
Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from...
Autores principales: | Zu, Baokai, Xia, Kewen, Pan, Yongke, Niu, Wenjia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338073/ https://www.ncbi.nlm.nih.gov/pubmed/28316616 http://dx.doi.org/10.1155/2017/9290230 |
Ejemplares similares
-
Single-cell and Spatial Transcriptomics Clustering with an Optimized Adaptive K-Nearest Neighbor Graph
por: Li, Jia, et al.
Publicado: (2023) -
Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation
por: Niu, Wenjia, et al.
Publicado: (2017) -
Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs
por: Wolff, Joachim, et al.
Publicado: (2021) -
A new affinity matrix weighted k-nearest neighbors graph to improve spectral clustering accuracy
por: Ahmed, Muhammad Jamal, et al.
Publicado: (2021) -
Single-cell gene set scoring with nearest neighbor graph smoothed data (gssnng)
por: Gibbs, David L, et al.
Publicado: (2023)