Cargando…
Antifungal Activity of the Ethanol Extract from Flos Rosae Chinensis with Activity against Fluconazole-Resistant Clinical Candida
This study was designed to investigate the antifungal activity of a hydroalcoholic extract from Flos Rosae Chinensis (FRC) combined with fluconazole (FCZ) against clinical isolates of Candida albicans resistant to FCZ. The minimum inhibitory concentration (MIC) of FRC was determined using a checkerb...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338309/ https://www.ncbi.nlm.nih.gov/pubmed/28303159 http://dx.doi.org/10.1155/2017/4780746 |
Sumario: | This study was designed to investigate the antifungal activity of a hydroalcoholic extract from Flos Rosae Chinensis (FRC) combined with fluconazole (FCZ) against clinical isolates of Candida albicans resistant to FCZ. The minimum inhibitory concentration (MIC) of FRC was determined using a checkerboard microdilution assay. The synergistic effects of the combination of FRC and FCZ against clinical isolates of C. albicans resistant to FCZ were further confirmed by constructing time-growth curves and performing an agar diffusion test. FRC alone exerted efficient antifungal activities against C. albicans within a MIC(80) ranging from 20 μg/ml to 40 μg/ml. FRC failed to enhance the effects of FCZ against sensitive C. albicans strains, although it rendered FCZ-resistant C. albicans more sensitive. These results were further confirmed by the result of in vivo study. Our study is the first to discover that FRC can inhibit the growth of C. albicans to a certain degree. An FRC antifungal mechanism study showed that FRC strengthens FCZ to inhibit the action of ergosterol biosynthesis by promoting the transformation of lanosterol to eburicol, suggesting that the antifungal mechanism of FRC involves the inhibition of ergosterol biosynthesis. |
---|