Cargando…
Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke
BACKGROUND: Cardioembolic stroke (CES), which causes 20% cause of all ischemic strokes, is associated with high mortality. Previous studies suggest that pathways play a critical role in the identification and pathogenesis of diseases. We aimed to develop an integrated approach that is able to constr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338568/ https://www.ncbi.nlm.nih.gov/pubmed/28232661 http://dx.doi.org/10.12659/MSM.899690 |
_version_ | 1782512540211740672 |
---|---|
author | Xing, Zhangmin Luan, Bin Zhao, Ruiying Li, Zhanbiao Sun, Guojian |
author_facet | Xing, Zhangmin Luan, Bin Zhao, Ruiying Li, Zhanbiao Sun, Guojian |
author_sort | Xing, Zhangmin |
collection | PubMed |
description | BACKGROUND: Cardioembolic stroke (CES), which causes 20% cause of all ischemic strokes, is associated with high mortality. Previous studies suggest that pathways play a critical role in the identification and pathogenesis of diseases. We aimed to develop an integrated approach that is able to construct individual networks of pathway cross-talk to quantify differences between patients with CES and controls. MATERIAL/METHODS: One biological data set E-GEOD-58294 was used, including 23 normal controls and 59 CES samples. We used individualized pathway aberrance score (iPAS) to assess pathway statistics of 589 Ingenuity Pathways Analysis (IPA) pathways. Random Forest (RF) classification was implemented to calculate the AUC of every network. These procedures were tested by Monte Carlo Cross-Validation for 50 bootstraps. RESULTS: A total of 28 networks with AUC >0.9 were found between CES and controls. Among them, 3 networks with AUC=1.0 had the best performance for classification in 50 bootstraps. The 3 pathway networks were able to significantly identify CES versus controls, which showed as biomarkers in the regulation and development of CES. CONCLUSIONS: This novel approach could identify 3 networks able to accurately classify CES and normal samples in individuals. This integrated application needs to be validated in other diseases. |
format | Online Article Text |
id | pubmed-5338568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53385682017-03-14 Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke Xing, Zhangmin Luan, Bin Zhao, Ruiying Li, Zhanbiao Sun, Guojian Med Sci Monit Laboratory Techniques BACKGROUND: Cardioembolic stroke (CES), which causes 20% cause of all ischemic strokes, is associated with high mortality. Previous studies suggest that pathways play a critical role in the identification and pathogenesis of diseases. We aimed to develop an integrated approach that is able to construct individual networks of pathway cross-talk to quantify differences between patients with CES and controls. MATERIAL/METHODS: One biological data set E-GEOD-58294 was used, including 23 normal controls and 59 CES samples. We used individualized pathway aberrance score (iPAS) to assess pathway statistics of 589 Ingenuity Pathways Analysis (IPA) pathways. Random Forest (RF) classification was implemented to calculate the AUC of every network. These procedures were tested by Monte Carlo Cross-Validation for 50 bootstraps. RESULTS: A total of 28 networks with AUC >0.9 were found between CES and controls. Among them, 3 networks with AUC=1.0 had the best performance for classification in 50 bootstraps. The 3 pathway networks were able to significantly identify CES versus controls, which showed as biomarkers in the regulation and development of CES. CONCLUSIONS: This novel approach could identify 3 networks able to accurately classify CES and normal samples in individuals. This integrated application needs to be validated in other diseases. International Scientific Literature, Inc. 2017-02-24 /pmc/articles/PMC5338568/ /pubmed/28232661 http://dx.doi.org/10.12659/MSM.899690 Text en © Med Sci Monit, 2017 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
spellingShingle | Laboratory Techniques Xing, Zhangmin Luan, Bin Zhao, Ruiying Li, Zhanbiao Sun, Guojian Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke |
title | Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke |
title_full | Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke |
title_fullStr | Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke |
title_full_unstemmed | Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke |
title_short | Personalized Analysis by Validation of Monte Carlo for Application of Pathways in Cardioembolic Stroke |
title_sort | personalized analysis by validation of monte carlo for application of pathways in cardioembolic stroke |
topic | Laboratory Techniques |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338568/ https://www.ncbi.nlm.nih.gov/pubmed/28232661 http://dx.doi.org/10.12659/MSM.899690 |
work_keys_str_mv | AT xingzhangmin personalizedanalysisbyvalidationofmontecarloforapplicationofpathwaysincardioembolicstroke AT luanbin personalizedanalysisbyvalidationofmontecarloforapplicationofpathwaysincardioembolicstroke AT zhaoruiying personalizedanalysisbyvalidationofmontecarloforapplicationofpathwaysincardioembolicstroke AT lizhanbiao personalizedanalysisbyvalidationofmontecarloforapplicationofpathwaysincardioembolicstroke AT sunguojian personalizedanalysisbyvalidationofmontecarloforapplicationofpathwaysincardioembolicstroke |