Cargando…

Critical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase

Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Di...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhaoya, Liu, Yanbo, Xu, Qian, Peng, Haiyang, Tang, Yixin, Yang, Tianlun, Yu, Zaixin, Cheng, Guangjie, Zhang, Guogang, Shi, Ruizheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338721/
https://www.ncbi.nlm.nih.gov/pubmed/28264790
http://dx.doi.org/10.1016/j.redox.2017.02.022
Descripción
Sumario:Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Dimethylarginine (ADMA) pathway. Hereby we describe the regulatory role of VPO1 on endothelial nitric oxide synthase (eNOS) expression and activity in human umbilical vein endothelial cells (HUVECs). In HUVECs AngiotensinII (100 nM) treatment reduced Nitric Oxide (NO) production, decreased eNOS expression and activity, which were reversed by VPO1 siRNA. Knockdown of VPO1 also attenuated ADMA production and eNOS uncoupling while enhancing phosphorylated ser1177 eNOS expression level. Furthermore, HOCl stimulation was shown to directly induce ADMA production and eNOS uncoupling, decrease phosphorylated ser1177 eNOS expression. It also significantly suppressed eNOS expression and activity together with NO production. Therefore, VPO1 plays a vital role in regulating eNOS expression and activity via hydrogen peroxide (H2O2)-VPO1-HOCl pathway.