Cargando…
Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification
Fungal infections are a global problem imposing considerable disease burden. One of the unmet needs in addressing these infections is rapid, sensitive diagnostics. A promising molecular diagnostic approach is high-resolution melt analysis (HRM). However, there has been little effort in leveraging HR...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338801/ https://www.ncbi.nlm.nih.gov/pubmed/28264030 http://dx.doi.org/10.1371/journal.pone.0173320 |
_version_ | 1782512556950159360 |
---|---|
author | Lu, Sha Mirchevska, Gordana Phatak, Sayali S. Li, Dongmei Luka, Janos Calderone, Richard A. Fonzi, William A. |
author_facet | Lu, Sha Mirchevska, Gordana Phatak, Sayali S. Li, Dongmei Luka, Janos Calderone, Richard A. Fonzi, William A. |
author_sort | Lu, Sha |
collection | PubMed |
description | Fungal infections are a global problem imposing considerable disease burden. One of the unmet needs in addressing these infections is rapid, sensitive diagnostics. A promising molecular diagnostic approach is high-resolution melt analysis (HRM). However, there has been little effort in leveraging HRM data for automated, objective identification of fungal species. The purpose of these studies was to assess the utility of distance methods developed for comparison of time series data to classify HRM curves as a means of fungal species identification. Dynamic time warping (DTW), first introduced in the context of speech recognition to identify temporal distortion of similar sounds, is an elastic distance measure that has been successfully applied to a wide range of time series data. Comparison of HRM curves of the rDNA internal transcribed spacer (ITS) region from 51 strains of 18 fungal species using DTW distances allowed accurate classification and clustering of all 51 strains. The utility of DTW distances for species identification was demonstrated by matching HRM curves from 243 previously identified clinical isolates against a database of curves from standard reference strains. The results revealed a number of prior misclassifications, discriminated species that are not resolved by routine phenotypic tests, and accurately identified all 243 test strains. In addition to DTW, several other distance functions, Edit Distance on Real sequence (EDR) and Shape-based Distance (SBD), showed promise. It is concluded that DTW-based distances provide a useful metric for the automated identification of fungi based on HRM curves of the ITS region and that this provides the foundation for a robust and automatable method applicable to the clinical setting. |
format | Online Article Text |
id | pubmed-5338801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53388012017-03-10 Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification Lu, Sha Mirchevska, Gordana Phatak, Sayali S. Li, Dongmei Luka, Janos Calderone, Richard A. Fonzi, William A. PLoS One Research Article Fungal infections are a global problem imposing considerable disease burden. One of the unmet needs in addressing these infections is rapid, sensitive diagnostics. A promising molecular diagnostic approach is high-resolution melt analysis (HRM). However, there has been little effort in leveraging HRM data for automated, objective identification of fungal species. The purpose of these studies was to assess the utility of distance methods developed for comparison of time series data to classify HRM curves as a means of fungal species identification. Dynamic time warping (DTW), first introduced in the context of speech recognition to identify temporal distortion of similar sounds, is an elastic distance measure that has been successfully applied to a wide range of time series data. Comparison of HRM curves of the rDNA internal transcribed spacer (ITS) region from 51 strains of 18 fungal species using DTW distances allowed accurate classification and clustering of all 51 strains. The utility of DTW distances for species identification was demonstrated by matching HRM curves from 243 previously identified clinical isolates against a database of curves from standard reference strains. The results revealed a number of prior misclassifications, discriminated species that are not resolved by routine phenotypic tests, and accurately identified all 243 test strains. In addition to DTW, several other distance functions, Edit Distance on Real sequence (EDR) and Shape-based Distance (SBD), showed promise. It is concluded that DTW-based distances provide a useful metric for the automated identification of fungi based on HRM curves of the ITS region and that this provides the foundation for a robust and automatable method applicable to the clinical setting. Public Library of Science 2017-03-06 /pmc/articles/PMC5338801/ /pubmed/28264030 http://dx.doi.org/10.1371/journal.pone.0173320 Text en © 2017 Lu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lu, Sha Mirchevska, Gordana Phatak, Sayali S. Li, Dongmei Luka, Janos Calderone, Richard A. Fonzi, William A. Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification |
title | Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification |
title_full | Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification |
title_fullStr | Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification |
title_full_unstemmed | Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification |
title_short | Dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification |
title_sort | dynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338801/ https://www.ncbi.nlm.nih.gov/pubmed/28264030 http://dx.doi.org/10.1371/journal.pone.0173320 |
work_keys_str_mv | AT lusha dynamictimewarpingassessmentofhighresolutionmeltcurvesprovidesarobustmetricforfungalidentification AT mirchevskagordana dynamictimewarpingassessmentofhighresolutionmeltcurvesprovidesarobustmetricforfungalidentification AT phataksayalis dynamictimewarpingassessmentofhighresolutionmeltcurvesprovidesarobustmetricforfungalidentification AT lidongmei dynamictimewarpingassessmentofhighresolutionmeltcurvesprovidesarobustmetricforfungalidentification AT lukajanos dynamictimewarpingassessmentofhighresolutionmeltcurvesprovidesarobustmetricforfungalidentification AT calderonericharda dynamictimewarpingassessmentofhighresolutionmeltcurvesprovidesarobustmetricforfungalidentification AT fonziwilliama dynamictimewarpingassessmentofhighresolutionmeltcurvesprovidesarobustmetricforfungalidentification |