Cargando…
Prediction and classification of Alzheimer disease based on quantification of MRI deformation
Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer’s disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patie...
Autores principales: | Long, Xiaojing, Chen, Lifang, Jiang, Chunxiang, Zhang, Lijuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338815/ https://www.ncbi.nlm.nih.gov/pubmed/28264071 http://dx.doi.org/10.1371/journal.pone.0173372 |
Ejemplares similares
-
Morphological Biomarker Differentiating MCI Converters from Nonconverters: Longitudinal Evidence Based on Hemispheric Asymmetry
por: Long, Xiaojing, et al.
Publicado: (2018) -
Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI
por: Jiang, Chunxiang, et al.
Publicado: (2016) -
The classification of coronal deformity based on preoperative global coronal malalignment for adult spinal deformity is questionable
por: Zhang, Jiandang, et al.
Publicado: (2022) -
Hippocampus Segmentation-Based Alzheimer’s Disease Diagnosis and Classification of MRI Images
por: Balasundaram, A., et al.
Publicado: (2023) -
Wavelet-Based Fractal Analysis of rs-fMRI for Classification of Alzheimer’s Disease
por: Sadiq, Alishba, et al.
Publicado: (2022)