Cargando…

Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study

To identify progressive supranuclear palsy (PSP), we combined voxel-based morphometry (VBM) and support vector machine (SVM) classification using disease-specific features in multicentric magnetic resonance imaging (MRI) data. Structural brain differences were investigated at four centers between 20...

Descripción completa

Detalles Bibliográficos
Autores principales: Mueller, Karsten, Jech, Robert, Bonnet, Cecilia, Tintěra, Jaroslav, Hanuška, Jaromir, Möller, Harald E., Fassbender, Klaus, Ludolph, Albert, Kassubek, Jan, Otto, Markus, Růžička, Evžen, Schroeter, Matthias L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339275/
https://www.ncbi.nlm.nih.gov/pubmed/28326008
http://dx.doi.org/10.3389/fnins.2017.00100
_version_ 1782512627334774784
author Mueller, Karsten
Jech, Robert
Bonnet, Cecilia
Tintěra, Jaroslav
Hanuška, Jaromir
Möller, Harald E.
Fassbender, Klaus
Ludolph, Albert
Kassubek, Jan
Otto, Markus
Růžička, Evžen
Schroeter, Matthias L.
author_facet Mueller, Karsten
Jech, Robert
Bonnet, Cecilia
Tintěra, Jaroslav
Hanuška, Jaromir
Möller, Harald E.
Fassbender, Klaus
Ludolph, Albert
Kassubek, Jan
Otto, Markus
Růžička, Evžen
Schroeter, Matthias L.
author_sort Mueller, Karsten
collection PubMed
description To identify progressive supranuclear palsy (PSP), we combined voxel-based morphometry (VBM) and support vector machine (SVM) classification using disease-specific features in multicentric magnetic resonance imaging (MRI) data. Structural brain differences were investigated at four centers between 20 patients with PSP and 20 age-matched healthy controls with T1-weighted MRI at 3T. To pave the way for future application in personalized medicine, we applied SVM classification to identify PSP on an individual level besides group analyses based on VBM. We found a major decline in gray matter density in the brainstem, insula, and striatum, and also in frontomedian regions, which is in line with current literature. Moreover, SVM classification yielded high accuracy rates above 80% for disease identification in imaging data. Focusing analyses on disease-specific regions-of-interest (ROI) led to higher accuracy rates compared to a whole-brain approach. Using a polynomial kernel (instead of a linear kernel) led to an increased sensitivity and a higher specificity of disease detection. Our study supports the application of MRI for individual diagnosis of PSP, if combined with SVM approaches. We demonstrate that SVM classification provides high accuracy rates in multicentric data—a prerequisite for potential application in diagnostic routine.
format Online
Article
Text
id pubmed-5339275
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-53392752017-03-21 Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study Mueller, Karsten Jech, Robert Bonnet, Cecilia Tintěra, Jaroslav Hanuška, Jaromir Möller, Harald E. Fassbender, Klaus Ludolph, Albert Kassubek, Jan Otto, Markus Růžička, Evžen Schroeter, Matthias L. Front Neurosci Neuroscience To identify progressive supranuclear palsy (PSP), we combined voxel-based morphometry (VBM) and support vector machine (SVM) classification using disease-specific features in multicentric magnetic resonance imaging (MRI) data. Structural brain differences were investigated at four centers between 20 patients with PSP and 20 age-matched healthy controls with T1-weighted MRI at 3T. To pave the way for future application in personalized medicine, we applied SVM classification to identify PSP on an individual level besides group analyses based on VBM. We found a major decline in gray matter density in the brainstem, insula, and striatum, and also in frontomedian regions, which is in line with current literature. Moreover, SVM classification yielded high accuracy rates above 80% for disease identification in imaging data. Focusing analyses on disease-specific regions-of-interest (ROI) led to higher accuracy rates compared to a whole-brain approach. Using a polynomial kernel (instead of a linear kernel) led to an increased sensitivity and a higher specificity of disease detection. Our study supports the application of MRI for individual diagnosis of PSP, if combined with SVM approaches. We demonstrate that SVM classification provides high accuracy rates in multicentric data—a prerequisite for potential application in diagnostic routine. Frontiers Media S.A. 2017-03-07 /pmc/articles/PMC5339275/ /pubmed/28326008 http://dx.doi.org/10.3389/fnins.2017.00100 Text en Copyright © 2017 Mueller, Jech, Bonnet, Tintěra, Hanuška, Möller, Fassbender, Ludolph, Kassubek, Otto, Růžička, Schroeter and The FTLDc Study Group. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Mueller, Karsten
Jech, Robert
Bonnet, Cecilia
Tintěra, Jaroslav
Hanuška, Jaromir
Möller, Harald E.
Fassbender, Klaus
Ludolph, Albert
Kassubek, Jan
Otto, Markus
Růžička, Evžen
Schroeter, Matthias L.
Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study
title Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study
title_full Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study
title_fullStr Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study
title_full_unstemmed Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study
title_short Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study
title_sort disease-specific regions outperform whole-brain approaches in identifying progressive supranuclear palsy: a multicentric mri study
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339275/
https://www.ncbi.nlm.nih.gov/pubmed/28326008
http://dx.doi.org/10.3389/fnins.2017.00100
work_keys_str_mv AT muellerkarsten diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT jechrobert diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT bonnetcecilia diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT tinterajaroslav diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT hanuskajaromir diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT mollerharalde diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT fassbenderklaus diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT ludolphalbert diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT kassubekjan diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT ottomarkus diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT ruzickaevzen diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT schroetermatthiasl diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy
AT diseasespecificregionsoutperformwholebrainapproachesinidentifyingprogressivesupranuclearpalsyamulticentricmristudy