Cargando…
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, a...
Autores principales: | Chai, Rifai, Ling, Sai Ho, San, Phyo Phyo, Naik, Ganesh R., Nguyen, Tuan N., Tran, Yvonne, Craig, Ashley, Nguyen, Hung T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339284/ https://www.ncbi.nlm.nih.gov/pubmed/28326009 http://dx.doi.org/10.3389/fnins.2017.00103 |
Ejemplares similares
-
Source-Space Brain Functional Connectivity Features in Electroencephalogram-Based Driver Fatigue Classification
por: Nguyen, Khanh Ha, et al.
Publicado: (2023) -
Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators
por: Perera, Dulan, et al.
Publicado: (2022) -
Hybrid brain–computer interface for biomedical cyber-physical system application using wireless embedded EEG systems
por: Chai, Rifai, et al.
Publicado: (2017) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks
por: Huang, Jing-Shan, et al.
Publicado: (2020)