Cargando…

Fast Parabola Detection Using Estimation of Distribution Algorithms

This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resultin...

Descripción completa

Detalles Bibliográficos
Autores principales: Guerrero-Turrubiates, Jose de Jesus, Cruz-Aceves, Ivan, Ledesma, Sergio, Sierra-Hernandez, Juan Manuel, Velasco, Jonas, Avina-Cervantes, Juan Gabriel, Avila-Garcia, Maria Susana, Rostro-Gonzalez, Horacio, Rojas-Laguna, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339634/
https://www.ncbi.nlm.nih.gov/pubmed/28321264
http://dx.doi.org/10.1155/2017/6494390
_version_ 1782512695240556544
author Guerrero-Turrubiates, Jose de Jesus
Cruz-Aceves, Ivan
Ledesma, Sergio
Sierra-Hernandez, Juan Manuel
Velasco, Jonas
Avina-Cervantes, Juan Gabriel
Avila-Garcia, Maria Susana
Rostro-Gonzalez, Horacio
Rojas-Laguna, Roberto
author_facet Guerrero-Turrubiates, Jose de Jesus
Cruz-Aceves, Ivan
Ledesma, Sergio
Sierra-Hernandez, Juan Manuel
Velasco, Jonas
Avina-Cervantes, Juan Gabriel
Avila-Garcia, Maria Susana
Rostro-Gonzalez, Horacio
Rojas-Laguna, Roberto
author_sort Guerrero-Turrubiates, Jose de Jesus
collection PubMed
description This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function. This proposed method is evaluated in terms of computational time and compared with two implementations of the generalized Hough transform and RANSAC method for parabola detection. Experimental results show that the proposed method outperforms the comparative methods in terms of execution time about 93.61% on synthetic images and 89% on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed method can be highly suitable for different medical applications.
format Online
Article
Text
id pubmed-5339634
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-53396342017-03-20 Fast Parabola Detection Using Estimation of Distribution Algorithms Guerrero-Turrubiates, Jose de Jesus Cruz-Aceves, Ivan Ledesma, Sergio Sierra-Hernandez, Juan Manuel Velasco, Jonas Avina-Cervantes, Juan Gabriel Avila-Garcia, Maria Susana Rostro-Gonzalez, Horacio Rojas-Laguna, Roberto Comput Math Methods Med Research Article This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function. This proposed method is evaluated in terms of computational time and compared with two implementations of the generalized Hough transform and RANSAC method for parabola detection. Experimental results show that the proposed method outperforms the comparative methods in terms of execution time about 93.61% on synthetic images and 89% on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed method can be highly suitable for different medical applications. Hindawi Publishing Corporation 2017 2017-02-21 /pmc/articles/PMC5339634/ /pubmed/28321264 http://dx.doi.org/10.1155/2017/6494390 Text en Copyright © 2017 Jose de Jesus Guerrero-Turrubiates et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Guerrero-Turrubiates, Jose de Jesus
Cruz-Aceves, Ivan
Ledesma, Sergio
Sierra-Hernandez, Juan Manuel
Velasco, Jonas
Avina-Cervantes, Juan Gabriel
Avila-Garcia, Maria Susana
Rostro-Gonzalez, Horacio
Rojas-Laguna, Roberto
Fast Parabola Detection Using Estimation of Distribution Algorithms
title Fast Parabola Detection Using Estimation of Distribution Algorithms
title_full Fast Parabola Detection Using Estimation of Distribution Algorithms
title_fullStr Fast Parabola Detection Using Estimation of Distribution Algorithms
title_full_unstemmed Fast Parabola Detection Using Estimation of Distribution Algorithms
title_short Fast Parabola Detection Using Estimation of Distribution Algorithms
title_sort fast parabola detection using estimation of distribution algorithms
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339634/
https://www.ncbi.nlm.nih.gov/pubmed/28321264
http://dx.doi.org/10.1155/2017/6494390
work_keys_str_mv AT guerreroturrubiatesjosedejesus fastparaboladetectionusingestimationofdistributionalgorithms
AT cruzacevesivan fastparaboladetectionusingestimationofdistributionalgorithms
AT ledesmasergio fastparaboladetectionusingestimationofdistributionalgorithms
AT sierrahernandezjuanmanuel fastparaboladetectionusingestimationofdistributionalgorithms
AT velascojonas fastparaboladetectionusingestimationofdistributionalgorithms
AT avinacervantesjuangabriel fastparaboladetectionusingestimationofdistributionalgorithms
AT avilagarciamariasusana fastparaboladetectionusingestimationofdistributionalgorithms
AT rostrogonzalezhoracio fastparaboladetectionusingestimationofdistributionalgorithms
AT rojaslagunaroberto fastparaboladetectionusingestimationofdistributionalgorithms