Cargando…

Pupillary responses to short-wavelength light are preserved in aging

With aging, less blue light reaches the retina due to gradual yellowing of the lens. This could result in reduced activation of blue light-sensitive melanopsin-containing retinal ganglion cells, which mediate non-visual light responses (e.g., the pupillary light reflex, melatonin suppression, and ci...

Descripción completa

Detalles Bibliográficos
Autores principales: Rukmini, A. V., Milea, Dan, Aung, Tin, Gooley, Joshua J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339857/
https://www.ncbi.nlm.nih.gov/pubmed/28266650
http://dx.doi.org/10.1038/srep43832
Descripción
Sumario:With aging, less blue light reaches the retina due to gradual yellowing of the lens. This could result in reduced activation of blue light-sensitive melanopsin-containing retinal ganglion cells, which mediate non-visual light responses (e.g., the pupillary light reflex, melatonin suppression, and circadian resetting). Herein, we tested the hypothesis that older individuals show greater impairment of pupillary responses to blue light relative to red light. Dose-response curves for pupillary constriction to 469-nm blue light and 631-nm red light were compared between young normal adults aged 21–30 years (n = 60) and older adults aged ≥50 years (normal, n = 54; mild cataract, n = 107; severe cataract, n = 18). Irrespective of wavelength, pupillary responses were reduced in older individuals and further attenuated by severe, but not mild, cataract. The reduction in pupillary responses was comparable in response to blue light and red light, suggesting that lens yellowing did not selectively reduce melanopsin-dependent light responses. Compensatory mechanisms likely occur in aging that ensure relative constancy of pupillary responses to blue light despite changes in lens transmission.