Cargando…

The interdependencies of viral load, the innate immune response, and clinical outcome in children presenting to the emergency department with respiratory syncytial virus-associated bronchiolitis

Respiratory syncytial virus (RSV) causes significant infant morbidity and mortality. For decades severe RSV-induced disease was thought to result from an uncontrolled host response to viral replication, but recent work suggests that a strong innate immune response early in infection is protective. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Piedra, Felipe-Andrés, Mei, Minghua, Avadhanula, Vasanthi, Mehta, Reena, Aideyan, Letisha, Garofalo, Roberto P., Piedra, Pedro A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340370/
https://www.ncbi.nlm.nih.gov/pubmed/28267794
http://dx.doi.org/10.1371/journal.pone.0172953
Descripción
Sumario:Respiratory syncytial virus (RSV) causes significant infant morbidity and mortality. For decades severe RSV-induced disease was thought to result from an uncontrolled host response to viral replication, but recent work suggests that a strong innate immune response early in infection is protective. To shed light on host-virus interactions and the viral determinants of disease, copy numbers of five RSV genes (NS1, NS2, N, G, F) were measured by quantitative real-time polymerase chain reaction (qPCR) in nasal wash samples from children with RSV-associated bronchiolitis. Correlations were sought with host cytokines/chemokines and biomarkers. Associations with disposition from the emergency department (hospitalized or sent home) and pulse oximetry O(2) saturation levels were also sought. Additionally, RNase P copy number was measured and used to normalize nasal wash data. RSV gene copy numbers were found to significantly correlate with both cytokine/chemokine and biomarker levels; and RNase P-normalized viral gene copy numbers (NS1, NS2, N and G) were significantly higher in infants with less severe disease. Moreover, three of the normalized viral gene copy numbers (NS1, NS2, and N) correlated significantly with arterial O(2) saturation levels. The data support a model where a higher viral load early in infection can promote a robust innate immune response that protects against progression into hypoxic RSV-induced lower respiratory tract illness.