Cargando…
Calculating Power by Bootstrap, with an Application to Cluster-Randomized Trials
BACKGROUND: A key requirement for a useful power calculation is that the calculation mimic the data analysis that will be performed on the actual data, once that data is observed. Close approximations may be difficult to achieve using analytic solutions, however, and thus Monte Carlo approaches, inc...
Autores principales: | Kleinman, Ken, Huang, Susan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AcademyHealth
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340517/ https://www.ncbi.nlm.nih.gov/pubmed/28303254 http://dx.doi.org/10.13063/2327-9214.1202 |
Ejemplares similares
-
The Effect of Cluster Size Variability on Statistical Power in Cluster-Randomized Trials
por: Lauer, Stephen A., et al.
Publicado: (2015) -
Matching in cluster randomized trials using the Goldilocks Approach
por: Sturdevant, S. Gwynn, et al.
Publicado: (2021) -
Introducing Bootstrap 4: Create Powerful Web Applications Using Bootstrap 4.5
por: Krause, Jörg
Publicado: (2020) -
ClusterBootstrap: An R package for the analysis of hierarchical data using generalized linear models with the cluster bootstrap
por: Deen, Mathijs, et al.
Publicado: (2019) -
Sample size and power calculations for open cohort longitudinal cluster randomized trials
por: Kasza, Jessica, et al.
Publicado: (2020)