Cargando…

Organic amendments enhance Pb tolerance and accumulation during micropropagation of Daphne jasminea

The study investigated the effects of organic amendments: pineapple pulp (PP) and agar hydrolyzate (AH), on micropropagation and Pb bioaccumulation and tolerance in a woody shrub Daphne jasminea cultured in vitro. The amendments were analyzed for their content of carbohydrates, phenolic acids, and p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiszniewska, Alina, Muszyńska, Ewa, Hanus-Fajerska, Ewa, Smoleń, Sylwester, Dziurka, Michał, Dziurka, Kinga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340849/
https://www.ncbi.nlm.nih.gov/pubmed/27815856
http://dx.doi.org/10.1007/s11356-016-7977-2
Descripción
Sumario:The study investigated the effects of organic amendments: pineapple pulp (PP) and agar hydrolyzate (AH), on micropropagation and Pb bioaccumulation and tolerance in a woody shrub Daphne jasminea cultured in vitro. The amendments were analyzed for their content of carbohydrates, phenolic acids, and phytohormones and added at a dose of 10 mL L(−1) to the medium containing 1.0 mM lead nitrate. Micropropagation coefficient increased by 10.2–16.6 % in PP and AH variants, respectively. Growth tolerance index increased by 22.9–31.8 % for the shoots and by 60.1–82.4 % for the roots. In the absence of Pb, the additives inhibited multiplication and growth of microplantlets. PP and AH facilitated Pb accumulation in plant organs, especially in the roots. PP enhanced bioconcentration factor and AH improved Pb translocation to the shoots. Adaptation to Pb was associated with increased accumulation of phenolics and higher radical scavenging activity. Medium supplementation, particularly with AH, enhanced antiradical activity of Pb-adapted lines but reduced the content of phenolic compounds. The study results indicated that supplementation with organic amendments may be beneficial in in vitro selection against lead toxicity.