Cargando…
Patch Based Multiple Instance Learning Algorithm for Object Tracking
To deal with the problems of illumination changes or pose variations and serious partial occlusion, patch based multiple instance learning (P-MIL) algorithm is proposed. The algorithm divides an object into many blocks. Then, the online MIL algorithm is applied on each block for obtaining strong cla...
Autores principales: | Wang, Zhenjie, Wang, Lijia, Zhang, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340983/ https://www.ncbi.nlm.nih.gov/pubmed/28321248 http://dx.doi.org/10.1155/2017/2426475 |
Ejemplares similares
-
Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm
por: Wang, Li Jia, et al.
Publicado: (2016) -
POSEA: A novel algorithm to evaluate the performance of multi-object instance image segmentation
por: Wang, Nianchao, et al.
Publicado: (2023) -
Instance-Level Contrastive Learning for Weakly Supervised Object Detection
por: Zhang, Ming, et al.
Publicado: (2022) -
A Novel Multiple Instance Learning Method Based on Extreme Learning Machine
por: Wang, Jie, et al.
Publicado: (2015) -
Visual Learning in Multiple-Object Tracking
por: Makovski, Tal, et al.
Publicado: (2008)