Cargando…

Critical role of quorum sensing-dependent glutamate metabolism in homeostatic osmolality and outer membrane vesiculation in Burkholderia glumae

Metabolic homeostasis in cooperative bacteria is achieved by modulating primary metabolism in a quorum sensing (QS)-dependent manner. A perturbed metabolism in QS mutants causes physiological stress in the rice bacterial pathogen Burkholderia glumae. Here, we show that increased bacterial osmolality...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Yongsung, Goo, Eunhye, Kim, Jinwoo, Hwang, Ingyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341150/
https://www.ncbi.nlm.nih.gov/pubmed/28272446
http://dx.doi.org/10.1038/srep44195
Descripción
Sumario:Metabolic homeostasis in cooperative bacteria is achieved by modulating primary metabolism in a quorum sensing (QS)-dependent manner. A perturbed metabolism in QS mutants causes physiological stress in the rice bacterial pathogen Burkholderia glumae. Here, we show that increased bacterial osmolality in B. glumae is caused by unusually high cellular concentrations of glutamate and betaine generated by QS deficiencies. QS negatively controls glutamate uptake and the expression of genes involved in the glutamine synthetase and glutamine oxoglutarate aminotransferase cycles. Thus, cellular glutamate levels were significantly higher in the QS mutants than in the wild type, and they caused hyperosmotic cellular conditions. Under the hypotonic conditions of the periplasm in the QS mutants, outer membrane bulging and vesiculation were observed, although these changes were rescued by knocking out the gltI gene, which encodes a glutamate transporter. Outer membrane modifications were not detected in the wild type. These results suggest that QS-dependent glutamate metabolism is critical for homeostatic osmolality. We suggest that outer membrane bulging and vesiculation might be the outcome of a physiological adaptation to relieve hypotonic osmotic stress in QS mutants. Our findings reveal how QS functions to maintain bacterial osmolality in a cooperative population.