Cargando…

Remobilization causes site‐specific cyst formation in immobilization‐induced knee cartilage degeneration in an immobilized rat model

An understanding of the articular cartilage degenerative process is necessary for the prevention and treatment of joint disease. The present study aimed to examine how long‐term immobilization‐induced cartilage degeneration is aggravated by remobilization. Sixty 8‐week‐old male Wistar rats were used...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagai, Momoko, Ito, Akira, Tajino, Junichi, Iijima, Hirotaka, Yamaguchi, Shoki, Zhang, Xiangkai, Aoyama, Tomoki, Kuroki, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341580/
https://www.ncbi.nlm.nih.gov/pubmed/26989984
http://dx.doi.org/10.1111/joa.12453
Descripción
Sumario:An understanding of the articular cartilage degenerative process is necessary for the prevention and treatment of joint disease. The present study aimed to examine how long‐term immobilization‐induced cartilage degeneration is aggravated by remobilization. Sixty 8‐week‐old male Wistar rats were used in this study. The unilateral knee joint was immobilized using an external fixator for 8 weeks. The rats were killed at 0 and 3 days, and at 1, 2, 4 and 8 weeks after removing the fixator. After the rats were killed, the maximum knee extension angles were measured. Histological sections at the medial mid‐condylar region (non‐contact, transitional and contact regions of the femur and tibia) were prepared and scored. The cartilage thickness and number of chondrocytes were measured, and CD44 and Col2‐3/4c expression levels were assessed immunohistochemically. The histological assessment revealed progressive aggravation of cartilage degeneration in the transitional region, with a decreased number of chondrocytes and CD44‐positive chondrocytes as well as poor scoring over time, particularly in the tibia. Cyst formation was confirmed in the transitional region of the tibia at 8 weeks post‐remobilization. The cartilage thickness in the transitional region was thicker than that in the contact region, particularly in the tibia. Col2‐3/4c expression was observed in the non‐contact and transitional regions, and the knee extension angle was recovered. In conclusion, immobilization‐induced cartilage degeneration was aggravated by remobilization over time in the transitional region, followed by observations of a decreased number of chondrocytes and morphological disparity between different cartilage regions.