Cargando…
Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion
Pseudomonas aeruginosa is a Gram-negative bacterial pathogen associated with acute and chronic infections. The universal c-di-GMP second messenger is instrumental in the switch from a motile lifestyle to resilient biofilm as in the cystic fibrosis lung. The SadC diguanylate cyclase is associated wit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341770/ https://www.ncbi.nlm.nih.gov/pubmed/28263305 http://dx.doi.org/10.1038/nmicrobiol.2017.27 |
Sumario: | Pseudomonas aeruginosa is a Gram-negative bacterial pathogen associated with acute and chronic infections. The universal c-di-GMP second messenger is instrumental in the switch from a motile lifestyle to resilient biofilm as in the cystic fibrosis lung. The SadC diguanylate cyclase is associated with this patho-adaptive transition. Here we identified an unrecognized SadC partner, WarA, which we show is a methyltransferase in complex with a putative kinase WarB. We established that WarA binds to c-di-GMP, which potentiates its methyltransferase activity. Together, WarA and WarB have structural similarities with the bi-functional Escherichia coli LPS O antigen regulator WbdD. Strikingly, WarA influences P. aeruginosa O antigen modal distribution and interacts with the LPS biogenesis machinery. LPS is known to modulate the immune response in the host, and by using a zebrafish infection model, we implicate WarA in the ability of P. aeruginosa to evade detection by the host. |
---|