Cargando…
Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia
Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purifi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341960/ https://www.ncbi.nlm.nih.gov/pubmed/27682875 http://dx.doi.org/10.18632/oncotarget.12194 |
_version_ | 1782513071147712512 |
---|---|
author | Chang, Ching-Wen Chen, Yu-Syuan Chen, Chien-Chih Chan, Ik-On Chen, Chin-Chu Sheu, Sen-Je Lin, Ting-wei Chou, Shiu-Huey Liu, Chung-Ji Lee, Te-Chang Lo, Jeng-Fan |
author_facet | Chang, Ching-Wen Chen, Yu-Syuan Chen, Chien-Chih Chan, Ik-On Chen, Chin-Chu Sheu, Sen-Je Lin, Ting-wei Chou, Shiu-Huey Liu, Chung-Ji Lee, Te-Chang Lo, Jeng-Fan |
author_sort | Chang, Ching-Wen |
collection | PubMed |
description | Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purified from Antrodia cinnamomea Mycelia extract (ACME), effectively abrogated the ALDH activity and abolished the CICs in head and neck squamous cell carcinoma cells (HNSCCs). Consequently, YMGKI-2 treatment suppressed self-renewal ability and expression of stemness signature genes (Oct-4 and Nanog) of sphere cells with enriched CICs. Moreover, YMGKI-2 treated sphere cells displayed reduction of CICs properties and promotion of cell differentiation, but not significant cytotoxicity. YMGKI-2 treatment also attenuated the tumorigenicity of HNSCC cells in vivo. Mechanistically, treatment of YMGKI-2 resulted in inactivation of STAT3 and Src. Lastly, combinatorial treatments with YMGKI-2 and standard chemotherapeutic drugs (cisplatin or Fluorouracil) restored the chemosensivity on sphere cells and cisplatin-resistant HNSCC cells. Together, we demonstrate that YMGKI-2 treatment effectively induces differentiation and reduces tumorigenicity of CICs. Further, combined treatment of YMGKI-2 and conventional chemotherapy can overcome chemoresistance. These results suggest that YMGKI-2 treatment may be used to improve future clinical responses in head and neck cancer treatment through targeting CICs. |
format | Online Article Text |
id | pubmed-5341960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-53419602017-03-27 Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia Chang, Ching-Wen Chen, Yu-Syuan Chen, Chien-Chih Chan, Ik-On Chen, Chin-Chu Sheu, Sen-Je Lin, Ting-wei Chou, Shiu-Huey Liu, Chung-Ji Lee, Te-Chang Lo, Jeng-Fan Oncotarget Research Paper Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purified from Antrodia cinnamomea Mycelia extract (ACME), effectively abrogated the ALDH activity and abolished the CICs in head and neck squamous cell carcinoma cells (HNSCCs). Consequently, YMGKI-2 treatment suppressed self-renewal ability and expression of stemness signature genes (Oct-4 and Nanog) of sphere cells with enriched CICs. Moreover, YMGKI-2 treated sphere cells displayed reduction of CICs properties and promotion of cell differentiation, but not significant cytotoxicity. YMGKI-2 treatment also attenuated the tumorigenicity of HNSCC cells in vivo. Mechanistically, treatment of YMGKI-2 resulted in inactivation of STAT3 and Src. Lastly, combinatorial treatments with YMGKI-2 and standard chemotherapeutic drugs (cisplatin or Fluorouracil) restored the chemosensivity on sphere cells and cisplatin-resistant HNSCC cells. Together, we demonstrate that YMGKI-2 treatment effectively induces differentiation and reduces tumorigenicity of CICs. Further, combined treatment of YMGKI-2 and conventional chemotherapy can overcome chemoresistance. These results suggest that YMGKI-2 treatment may be used to improve future clinical responses in head and neck cancer treatment through targeting CICs. Impact Journals LLC 2016-09-22 /pmc/articles/PMC5341960/ /pubmed/27682875 http://dx.doi.org/10.18632/oncotarget.12194 Text en Copyright: © 2016 Chang et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Chang, Ching-Wen Chen, Yu-Syuan Chen, Chien-Chih Chan, Ik-On Chen, Chin-Chu Sheu, Sen-Je Lin, Ting-wei Chou, Shiu-Huey Liu, Chung-Ji Lee, Te-Chang Lo, Jeng-Fan Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia |
title | Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia |
title_full | Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia |
title_fullStr | Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia |
title_full_unstemmed | Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia |
title_short | Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia |
title_sort | targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of stat3 and src activity using an active component of antrodia cinnamomea mycelia |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341960/ https://www.ncbi.nlm.nih.gov/pubmed/27682875 http://dx.doi.org/10.18632/oncotarget.12194 |
work_keys_str_mv | AT changchingwen targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT chenyusyuan targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT chenchienchih targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT chanikon targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT chenchinchu targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT sheusenje targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT lintingwei targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT choushiuhuey targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT liuchungji targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT leetechang targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia AT lojengfan targetingcancerinitiatingcellsbypromotingcelldifferentiationandrestoringchemosensitivityviadualinactivationofstat3andsrcactivityusinganactivecomponentofantrodiacinnamomeamycelia |