Cargando…

miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B

The incidence and mortality rate of renal cell carcinoma (RCC) have been significantly increasing; however, the mechanisms involved in RCC development and progression are unclear. In this study, we found that miR-28-5p was decreased in RCC tumor specimens and several renal carcinoma cell lines. By u...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Cheng, Wu, Caiyun, Yang, Qi, Ding, Meng, Zhong, Jinsha, Zhang, Chen-Yu, Ge, Jingping, Wang, Junjun, Zhang, Chunni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342021/
https://www.ncbi.nlm.nih.gov/pubmed/27729617
http://dx.doi.org/10.18632/oncotarget.12516
Descripción
Sumario:The incidence and mortality rate of renal cell carcinoma (RCC) have been significantly increasing; however, the mechanisms involved in RCC development and progression are unclear. In this study, we found that miR-28-5p was decreased in RCC tumor specimens and several renal carcinoma cell lines. By using a combination of luciferase reporter assays and western blotting, we identified RAP1B, a Ras-related small GTP-binding oncoprotein implicated in a variety of tumors, as a direct target of miR-28-5p in RCC. The RAP1B protein level was increased in RCC tumor specimens and renal carcinoma cell lines, and this was inversely correlated with miR-28-5p expression. In vitro gain-of-function and loss-of-function studies in human renal carcinoma cell lines, demonstrated that miR-28-5p suppressed cell proliferation and migration by directly inhibiting RAP1B, and this effect was reversed by co-transfection with RAP1B. In addition, the stable overexpression of miR-28-5p inhibited tumor cell proliferation in vivo. This newly identified miR-28-5p/RAP1B axis provides a novel mechanism for the pathogenesis of RCC, and molecules in this axis may serve as potential biomarkers and therapeutic targets for RCC.