Cargando…
c-Cbl mediates the degradation of tumorigenic nuclear β-catenin contributing to the heterogeneity in Wnt activity in colorectal tumors
Despite the loss of Adenomatous Polyposis Coli (APC) in a majority of colorectal cancers (CRC), not all CRCs bear hallmarks of Wnt activation, such as nuclear β-catenin. This underscores the presence of other Wnt regulators that are important to define, given the pathogenic and prognostic roles of n...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342068/ https://www.ncbi.nlm.nih.gov/pubmed/27661103 http://dx.doi.org/10.18632/oncotarget.12107 |
Sumario: | Despite the loss of Adenomatous Polyposis Coli (APC) in a majority of colorectal cancers (CRC), not all CRCs bear hallmarks of Wnt activation, such as nuclear β-catenin. This underscores the presence of other Wnt regulators that are important to define, given the pathogenic and prognostic roles of nuclear β-catenin in human CRC. Herein, we investigated the effect of Casitas B-lineage lymphoma (c-Cbl) on nuclear β-catenin, which is an oncoprotein upregulated in CRC due to loss-of-function APC or gain-of-function CTNNB1 mutations. Despite mechanistic rationale and recent discoveries of c-Cbl's mutations in solid tumors, little is known about its functional importance in CRC. Our study in a cohort of human CRC patients demonstrated an inverse correlation between nuclear β-catenin and c-Cbl. Further investigation showed that the loss of c-Cbl activity significantly enhanced nuclear β-catenin and CRC tumor growth in cell culture and a mouse xenograft model. c-Cbl interacted with and downregulated β-catenin in a manner that was independent of CTNNB1 or APC mutation status. This study demonstrates a previously unrecognized function of c-Cbl as a negative regulator of CRC. |
---|