Cargando…
Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades
High-throughput omics analyses are applied to elucidate molecular pathogenic mechanisms in cancer. Given restricted cohort sizes and contrasting large feature sets paired multi-omics analysis supports discovery of true positive deregulated signaling cascades. For lung cancer patients we measured fro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342097/ https://www.ncbi.nlm.nih.gov/pubmed/27588394 http://dx.doi.org/10.18632/oncotarget.11723 |
_version_ | 1782513102926905344 |
---|---|
author | Backes, Christina Ludwig, Nicole Leidinger, Petra Huwer, Hanno Tenzer, Stefan Fehlmann, Tobias Franke, Andre Meese, Eckart Lenhof, Hans-Peter Keller, Andreas |
author_facet | Backes, Christina Ludwig, Nicole Leidinger, Petra Huwer, Hanno Tenzer, Stefan Fehlmann, Tobias Franke, Andre Meese, Eckart Lenhof, Hans-Peter Keller, Andreas |
author_sort | Backes, Christina |
collection | PubMed |
description | High-throughput omics analyses are applied to elucidate molecular pathogenic mechanisms in cancer. Given restricted cohort sizes and contrasting large feature sets paired multi-omics analysis supports discovery of true positive deregulated signaling cascades. For lung cancer patients we measured from the same tissue biopsies proteomic- (6,183 proteins), transcriptomic- (34,687 genes) and miRNomic data (2,549 miRNAs). To minimize inter-individual variations case and control lung biopsies have been gathered from the same individuals. Considering single omics entities, 15 of 2,549 miRNAs (0.6%), 752 of 34,687 genes (2.2%) and 141 of 6,183 proteins (2.3%) were significantly deregulated. Multivariate analysis also revealed that effects in miRNA were smaller compared to genes and proteins indicating that expression changes of miRNAs might also have limited impact of pathogenicity. However, a new algorithm for modeling the complex mutual interactions of miRNAs and their target genes facilitated precise prediction of deregulation in cancer genes (92.3% accuracy, p=0.007). Lastly, deregulation of genes in cancer matched deregulation of proteins coded by the genes in 80% of cases. The resulting interaction network, which is based on quantitative analysis of the abundance of miRNAs, mRNAs and proteins each taken from the same lung cancer tissue and from the same autologous normal lung tissue confirms molecular pathological changes and further contributes to the discovery of altered signaling cascades in lung cancer. |
format | Online Article Text |
id | pubmed-5342097 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-53420972017-03-24 Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades Backes, Christina Ludwig, Nicole Leidinger, Petra Huwer, Hanno Tenzer, Stefan Fehlmann, Tobias Franke, Andre Meese, Eckart Lenhof, Hans-Peter Keller, Andreas Oncotarget Research Paper High-throughput omics analyses are applied to elucidate molecular pathogenic mechanisms in cancer. Given restricted cohort sizes and contrasting large feature sets paired multi-omics analysis supports discovery of true positive deregulated signaling cascades. For lung cancer patients we measured from the same tissue biopsies proteomic- (6,183 proteins), transcriptomic- (34,687 genes) and miRNomic data (2,549 miRNAs). To minimize inter-individual variations case and control lung biopsies have been gathered from the same individuals. Considering single omics entities, 15 of 2,549 miRNAs (0.6%), 752 of 34,687 genes (2.2%) and 141 of 6,183 proteins (2.3%) were significantly deregulated. Multivariate analysis also revealed that effects in miRNA were smaller compared to genes and proteins indicating that expression changes of miRNAs might also have limited impact of pathogenicity. However, a new algorithm for modeling the complex mutual interactions of miRNAs and their target genes facilitated precise prediction of deregulation in cancer genes (92.3% accuracy, p=0.007). Lastly, deregulation of genes in cancer matched deregulation of proteins coded by the genes in 80% of cases. The resulting interaction network, which is based on quantitative analysis of the abundance of miRNAs, mRNAs and proteins each taken from the same lung cancer tissue and from the same autologous normal lung tissue confirms molecular pathological changes and further contributes to the discovery of altered signaling cascades in lung cancer. Impact Journals LLC 2016-08-31 /pmc/articles/PMC5342097/ /pubmed/27588394 http://dx.doi.org/10.18632/oncotarget.11723 Text en Copyright: © 2016 Backes et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Backes, Christina Ludwig, Nicole Leidinger, Petra Huwer, Hanno Tenzer, Stefan Fehlmann, Tobias Franke, Andre Meese, Eckart Lenhof, Hans-Peter Keller, Andreas Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades |
title | Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades |
title_full | Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades |
title_fullStr | Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades |
title_full_unstemmed | Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades |
title_short | Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: known and novel signaling cascades |
title_sort | paired proteomics, transcriptomics and mirnomics in non-small cell lung cancers: known and novel signaling cascades |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342097/ https://www.ncbi.nlm.nih.gov/pubmed/27588394 http://dx.doi.org/10.18632/oncotarget.11723 |
work_keys_str_mv | AT backeschristina pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT ludwignicole pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT leidingerpetra pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT huwerhanno pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT tenzerstefan pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT fehlmanntobias pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT frankeandre pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT meeseeckart pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT lenhofhanspeter pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades AT kellerandreas pairedproteomicstranscriptomicsandmirnomicsinnonsmallcelllungcancersknownandnovelsignalingcascades |