Cargando…

MDR-TB treatment as prevention: The projected population-level impact of expanded treatment for multidrug-resistant tuberculosis

BACKGROUND: In 2013, approximately 480,000 people developed active multidrug-resistant tuberculosis (MDR-TB), while only 97,000 started MDR-TB treatment. We sought to estimate the impact of improving access to MDR-TB diagnosis and treatment, under multiple diagnostic algorithm and treatment regimen...

Descripción completa

Detalles Bibliográficos
Autores principales: Kendall, Emily A., Azman, Andrew S., Cobelens, Frank G., Dowdy, David W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342197/
https://www.ncbi.nlm.nih.gov/pubmed/28273116
http://dx.doi.org/10.1371/journal.pone.0172748
Descripción
Sumario:BACKGROUND: In 2013, approximately 480,000 people developed active multidrug-resistant tuberculosis (MDR-TB), while only 97,000 started MDR-TB treatment. We sought to estimate the impact of improving access to MDR-TB diagnosis and treatment, under multiple diagnostic algorithm and treatment regimen scenarios, on ten-year projections of MDR-TB incidence and mortality. METHODS: We constructed a dynamic transmission model of an MDR-TB epidemic in an illustrative East/Southeast Asian setting. Using approximate Bayesian computation, we investigated a wide array of potential epidemic trajectories consistent with current notification data and known TB epidemiology. RESULTS: Despite an overall projected decline in TB incidence, data-consistent simulations suggested that MDR-TB incidence is likely to rise between 2015 and 2025 under continued 2013 treatment practices, although with considerable uncertainty (median 17% increase, 95% Uncertainty Range [UR] -38% to +137%). But if, by 2017, all identified active TB patients with previously-treated TB could be tested for drug susceptibility, and 85% of those with MDR-TB could initiate MDR-appropriate treatment, then MDR-TB incidence in 2025 could be reduced by 26% (95% UR 4–52%) relative to projections under continued current practice. Also expanding this drug-susceptibility testing and appropriate MDR-TB treatment to treatment-naïve as well as previously-treated TB cases, by 2020, could reduce MDR-TB incidence in 2025 by 29% (95% UR 6–55%) compared to continued current practice. If this diagnosis and treatment of all MDR-TB in known active TB cases by 2020 could be implemented via a novel second-line regimen with similar effectiveness and tolerability as current first-line therapy, a 54% (95% UR 20–74%) reduction in MDR-TB incidence compared to current-practice projections could be achieved by 2025. CONCLUSIONS: Expansion of diagnosis and treatment of MDR-TB, even using current sub-optimal second-line regimens, is expected to significantly decrease MDR-TB incidence at the population level. Focusing MDR diagnostic efforts on previously-treated cases is an efficient first-step approach.