Cargando…

FRMD6 inhibits human glioblastoma growth and progression by negatively regulating activity of receptor tyrosine kinases

FRMD6 is an Ezrin/Radixin/Moesin (ERM) family protein and a human homologue of Drosophila expanded (ex). Ex functions in parallel of Drosophila merlin at upstream of the Hippo signaling pathway that controls proliferation, apoptosis, tissue regeneration, and tumorigenesis. Even though the core kinas...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yin, Wang, Kaiqiang, Yu, Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342536/
https://www.ncbi.nlm.nih.gov/pubmed/27661120
http://dx.doi.org/10.18632/oncotarget.12148
Descripción
Sumario:FRMD6 is an Ezrin/Radixin/Moesin (ERM) family protein and a human homologue of Drosophila expanded (ex). Ex functions in parallel of Drosophila merlin at upstream of the Hippo signaling pathway that controls proliferation, apoptosis, tissue regeneration, and tumorigenesis. Even though the core kinase cascade (MST1/2-Lats1/2-YAP/TAZ) of the Hippo pathway has been well established, its upstream regulators are not well understood. Merlin promotes activation of the Hippo pathway. However, the effect of FRMD6 on the Hippo pathway is controversial. Little is known about how FRMD6 functions and the potential role of FRMD in gliomagenesis and glioblastoma (GBM) progression. We demonstrate for the first time that FRMD6 is down-regulated in human GBM cells and tissues and that increased FRMD6 expression inhibits whereas FRMD6 knockdown promotes GBM cell proliferation/invasion in vitro and GBM growth/progression in vivo. Furthermore, we demonstrate that unlike increased expression of merlin, which enhances the stress induced activation of the Hippo pathway, increased FRMD6 expression displays little effect on the pathway. In contrast, we show that FRMD6 inhibits activation of a couple of receptor tyrosine kinases (RTKs) including c-Met and PDGFR and their downstream Erk and AKT kinases. Moreover, we show that expression of constitutively active c-Met, the TPR-Met fusion protein, largely reverses the anti-GBM effect of FRMD6 in vivo, suggesting that FRMD6 functions at least partially through inhibiting activity of RTKs especially c-Met. These results establish a novel function of FRMD6 in inhibiting human GBM growth and progression and uncover a novel mechanism by which FRMD6 exerts its anti-GBM activity.