Cargando…

NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma

Neurotensin (NTS) is a neuropeptide distributed in central nervous and digestive systems. In this study, the significant association between ectopic NTS expression and tumor invasion was confirmed in hepatocellular carcinoma (HCC). In primary HCC tissues, the NTS and neurotensin receptor 1 (NTR1) co...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Yingnan, Long, Xinxin, Zhang, Lijie, Chen, Jieying, Liu, Pengpeng, Li, Hui, Wei, Feng, Yu, Wenwen, Ren, Xiubao, Yu, Jinpu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342554/
https://www.ncbi.nlm.nih.gov/pubmed/27611941
http://dx.doi.org/10.18632/oncotarget.11854
Descripción
Sumario:Neurotensin (NTS) is a neuropeptide distributed in central nervous and digestive systems. In this study, the significant association between ectopic NTS expression and tumor invasion was confirmed in hepatocellular carcinoma (HCC). In primary HCC tissues, the NTS and neurotensin receptor 1 (NTR1) co-expression (NTS(+)NTR1(+)) is a poor prognostic factor correlated with aggressive biological behaviors and poor clinical prognosis. Enhanced epithelial-to-mesenchymal transition (EMT) features, including decreased E-cadherin, increased β-catenin translocation and N-cadherin expression, were identified in NTS(+)NTR1(+) HCC tissues. Varied NTS-responsible HCC cell lines were established using NTR1 genetically modified Hep3B and HepG2 cells which were used to elucidate the molecular mechanisms regulating NTS-induced EMT and tumor invasion in vitro. Results revealed that inducing exogenous NTS stimulation and enhancing NTR1 expression promoted tumor invasion rather than proliferation by accelerating EMT in HCC cells. The NTS-induced EMT was correlated with the remarkable increase in Wnt1, Wnt3, Wnt5, Axin, and p-GSK3β expression and was significantly reversed by blocking the NTS signaling via the NTR1 antagonist SR48692 or by inhibiting the activation of the Wnt/β-catenin pathway via specific inhibitors, such as TSW119 and DKK-1. SR48692 also inhibited the metastases of NTR1-overexpressing HCC xenografts in the lungs in vivo. This finding implied that NTS may be an important stimulus to promote HCC invasion and metastasis both in vitro and in vivo, and NTS signaling enhanced the tumor EMT and invasion potentials by activating the canonical Wnt/β-catenin signaling pathway. Therefore, NTS may be a valuable therapeutic target to prevent tumor progression in HCC.