Cargando…
Overexpression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo
Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic ra...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342722/ https://www.ncbi.nlm.nih.gov/pubmed/27626699 http://dx.doi.org/10.18632/oncotarget.11933 |
Sumario: | Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic rate of >75%. The study in vitro showed that upregulation of Sulf-1 in Hca-F cells significantly reduced cell proliferation, migration and invasion (p<0.05). Also, the forced expression of Sulf-1 downregulated Mesothelin (Msln) at both the protein and mRNA levels. The experiment in vivo further showed that up-regulation of Sulf-1 with the attendant downregulation of mesothelin delayed tumor growth and decreased lymph node metastasis. In conclusion, our findings show that Sulf-1 is an important tumor suppressor gene in hepatocellular carcinoma (HCC), and its overexpression downregulates Msln and results in a decrease in HCC cell proliferation, migration, invasion, and lymphatic metastasis. This functional relationship between Sulf-1 and Msln could be exploited for the development of a novel liver cancer therapy. |
---|