Cargando…
Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis
Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer tre...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342787/ https://www.ncbi.nlm.nih.gov/pubmed/27713150 http://dx.doi.org/10.18632/oncotarget.12427 |
Sumario: | Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy. Here in this study, we show that a novel proteasome inhibitor Carfilzomib (CFZ) exerts anti-tumor effect on NB. CFZ caused decreased cell viability and attenuated colony formation ability of a subset of NB cell lines. CFZ induced cell apoptosis in NB cells. Moreover, CFZ enhanced the cytotoxic effect of doxorubicin (Dox) on NB cells and Dox-induced p38 and JNK phosphorylation. In addition, CFZ inhibited Dox-induced NF-κB activation by stabilizing the protein level of IκBα. Furthermore, CFZ induced apoptosis and augmented Dox-induced apoptosis in NB tumor cells in orthotopic xenograft mouse models. In summary, our study suggests that proteasome is a therapeutic target in NB and proteasome inhibition by CFZ is a potential therapeutic strategy for treating NB patients. |
---|