Cargando…
Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data
BACKGROUND: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. s...
Autores principales: | Conrad, Tim O. F., Genzel, Martin, Cvetkovic, Nada, Wulkow, Niklas, Leichtle, Alexander, Vybiral, Jan, Kutyniok, Gitta, Schütte, Christof |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343371/ https://www.ncbi.nlm.nih.gov/pubmed/28274197 http://dx.doi.org/10.1186/s12859-017-1565-4 |
Ejemplares similares
-
MATHEON Workshop 2013
por: Boche, Holger, et al.
Publicado: (2015) -
2nd International MATHEON Conference on Compressed Sensing and its Applications
por: Boche, Holger, et al.
Publicado: (2017) -
Compressed sensing & sparse filtering
por: Carmi, Avishy Y, et al.
Publicado: (2013) -
Unification of sparse Bayesian learning algorithms for electromagnetic brain imaging with the majorization minimization framework
por: Hashemi, Ali, et al.
Publicado: (2021) -
Sparse representations and compressive sensing for imaging and vision
por: Patel, Vishal M, et al.
Publicado: (2013)