Cargando…

Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective a...

Descripción completa

Detalles Bibliográficos
Autores principales: Weinrauch, I., Savchenko, I., Denysenko, D., Souliou, S. M., Kim, H-H, Le Tacon, M., Daemen, L. L., Cheng, Y., Mavrandonakis, A., Ramirez-Cuesta, A. J., Volkmer, D., Schütz, G., Hirscher, M., Heine, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343471/
https://www.ncbi.nlm.nih.gov/pubmed/28262794
http://dx.doi.org/10.1038/ncomms14496
Descripción
Sumario:The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol(−1)) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gas phase. Large difference in adsorption enthalpy of 2.5 kJ mol(−1) between D(2) and H(2) results in D(2)-over-H(2) selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H(2)/D(2) mixtures allows the prediction of selectivities for tritium-containing isotopologues.