Cargando…

Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical element...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohacsi, Istvan, Vartiainen, Ismo, Rösner, Benedikt, Guizar-Sicairos, Manuel, Guzenko, Vitaliy A., McNulty, Ian, Winarski, Robert, Holt, Martin V., David, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343657/
http://dx.doi.org/10.1038/srep43624
Descripción
Sumario:Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, singlechip optical devices with 15 and 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.