Cargando…

Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis

Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B(1) in food and feed samples is of prime interest for commodity importer...

Descripción completa

Detalles Bibliográficos
Autores principales: Sieger, Markus, Kos, Gregor, Sulyok, Michael, Godejohann, Matthias, Krska, Rudolf, Mizaikoff, Boris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343660/
https://www.ncbi.nlm.nih.gov/pubmed/28276454
http://dx.doi.org/10.1038/srep44028
Descripción
Sumario:Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B(1) in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B(1) affected peanuts at EU regulatory limits of 1250 μg kg(−1) and 8 μg kg(−1), respectively.