Cargando…

Serum Metabolomic Profiling Identifies Characterization of Non-Obstructive Azoospermic Men

Male infertility is considered a common health problem, and non-obstructive azoospermia with unclear pathogenesis is one of the most challenging tasks for clinicians. The objective of this study was to investigate the differential serum metabolic pattern in non-obstructive azoospermic men and to det...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhe, Zhang, Yingwei, Liu, Changjie, Zhao, Mingming, Yang, Yuzhuo, Wu, Han, Zhang, Hongliang, Lin, Haocheng, Zheng, Lemin, Jiang, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343775/
https://www.ncbi.nlm.nih.gov/pubmed/28125052
http://dx.doi.org/10.3390/ijms18020238
Descripción
Sumario:Male infertility is considered a common health problem, and non-obstructive azoospermia with unclear pathogenesis is one of the most challenging tasks for clinicians. The objective of this study was to investigate the differential serum metabolic pattern in non-obstructive azoospermic men and to determine potential biomarkers related to spermatogenic dysfunction. Serum samples from patients with non-obstructive azoospermia (n = 22) and healthy controls (n = 31) were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Serum metabolomic profiling could differentiate non-obstructive azoospermic patients from healthy control subjects. A total of 24 metabolites were screened and identified as potential markers, many of which are involved in energy production, oxidative stress and cell apoptosis in spermatogenesis. Moreover, the results showed that various metabolic pathways, including d-glutamine and d-glutamate metabolism, taurine and hypotaurine metabolism, pyruvate metabolism, the citrate cycle and alanine, aspartate and glutamate metabolism, were disrupted in patients with non-obstructive azoospermia. Our results indicated that the serum metabolic disorders may contribute to the etiology of non-obstructive azoospermia. This study suggested that serum metabolomics could identify unique metabolic patterns of non-obstructive azoospermia and provide novel insights into the pathogenesis underlying male infertility.