Cargando…
Parallel group independent component analysis for massive fMRI data sets
Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have...
Autores principales: | Chen, Shaojie, Huang, Lei, Qiu, Huitong, Nebel, Mary Beth, Mostofsky, Stewart H., Pekar, James J., Lindquist, Martin A., Eloyan, Ani, Caffo, Brian S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344430/ https://www.ncbi.nlm.nih.gov/pubmed/28278208 http://dx.doi.org/10.1371/journal.pone.0173496 |
Ejemplares similares
-
Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R
por: Eloyan, Ani, et al.
Publicado: (2014) -
Analysis of Group ICA-Based Connectivity Measures from fMRI: Application to Alzheimer's Disease
por: Li, Shanshan, et al.
Publicado: (2012) -
A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data
por: Li, Shanshan, et al.
Publicado: (2016) -
Precentral gyrus functional connectivity signatures of autism
por: Nebel, Mary Beth, et al.
Publicado: (2014) -
Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging
por: Eloyan, Ani, et al.
Publicado: (2012)