Cargando…
Manufacture of low-benzo(a)pyrene sesame seed (Sesamum indicum L.) oil using a self-designed apparatus
The aim of this study was to lower benzo(a)pyrene (BaP) contents in sesame seed oil (SSO) during manufacture by using a self-designed apparatus, to determine its optimal conditions, and to analyze antioxidants in SSO which might be related to BaP content reduction. Washing and spin-drying steps redu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344456/ https://www.ncbi.nlm.nih.gov/pubmed/28278179 http://dx.doi.org/10.1371/journal.pone.0173585 |
Sumario: | The aim of this study was to lower benzo(a)pyrene (BaP) contents in sesame seed oil (SSO) during manufacture by using a self-designed apparatus, to determine its optimal conditions, and to analyze antioxidants in SSO which might be related to BaP content reduction. Washing and spin-drying steps reduce exogenous BaP contamination, and the reduced moisture in seeds lowered BaP content in final SSO. A ventilation system in the roasting step inhibits BaP formation and reabsorption, followed by a controlled compression step. The optimal condition, a single washing cycle with 2-min spin-drying, 1350-rpm ventilation, and a single compression cycle, reduced the BaP content in SSO to 2.93 μg/kg, where the raw seeds had been spiked with 10-μg/kg BaP. Total phenolic contents showed a reversal pattern to the distribution of BaP contents. Sesamol and sesamolin were quantified by a high performance liquid chromatography-ultraviolet detector, and it was suggested that sesamol which is a strong antioxidant might have prevented BaP formation during the roasting step. This study enabled the commercial production of low-BaP SSO, and the data could be used in further investigations of the BaP content reduction mechanism with quantitative chemical analysis of the SSO composition. |
---|