Cargando…

Warming and drought combine to increase pest insect fitness on urban trees

Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Dale, Adam G., Frank, Steven D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344462/
https://www.ncbi.nlm.nih.gov/pubmed/28278206
http://dx.doi.org/10.1371/journal.pone.0173844
_version_ 1782513547848187904
author Dale, Adam G.
Frank, Steven D.
author_facet Dale, Adam G.
Frank, Steven D.
author_sort Dale, Adam G.
collection PubMed
description Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests.
format Online
Article
Text
id pubmed-5344462
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-53444622017-03-29 Warming and drought combine to increase pest insect fitness on urban trees Dale, Adam G. Frank, Steven D. PLoS One Research Article Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests. Public Library of Science 2017-03-09 /pmc/articles/PMC5344462/ /pubmed/28278206 http://dx.doi.org/10.1371/journal.pone.0173844 Text en © 2017 Dale, Frank http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Dale, Adam G.
Frank, Steven D.
Warming and drought combine to increase pest insect fitness on urban trees
title Warming and drought combine to increase pest insect fitness on urban trees
title_full Warming and drought combine to increase pest insect fitness on urban trees
title_fullStr Warming and drought combine to increase pest insect fitness on urban trees
title_full_unstemmed Warming and drought combine to increase pest insect fitness on urban trees
title_short Warming and drought combine to increase pest insect fitness on urban trees
title_sort warming and drought combine to increase pest insect fitness on urban trees
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344462/
https://www.ncbi.nlm.nih.gov/pubmed/28278206
http://dx.doi.org/10.1371/journal.pone.0173844
work_keys_str_mv AT daleadamg warminganddroughtcombinetoincreasepestinsectfitnessonurbantrees
AT frankstevend warminganddroughtcombinetoincreasepestinsectfitnessonurbantrees