Cargando…
Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation
Lanthanoid metal-organic frameworks (Ln-MOFs) can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III) a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344597/ https://www.ncbi.nlm.nih.gov/pubmed/28772440 http://dx.doi.org/10.3390/ma10010081 |
Sumario: | Lanthanoid metal-organic frameworks (Ln-MOFs) can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III) and Tb(III) ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H(3)TATB) as a ligand, two new Ln-MOFs, [Dy(TATB)(DMF)(2)] (1) and [Tb(TATB)(DMF)(2)] (2), were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets. |
---|