Cargando…

Direct Printing of 1-D and 2-D Electronically Conductive Structures by Molten Lead-Free Solder

This study aims to determine the effects of appropriate experimental parameters on the thermophysical properties of molten micro droplets, Sn-3Ag-0.5Cu solder balls with an average droplet diameter of 50 μm were prepared. The inkjet printing parameters of the molten micro droplets, such as the dot s...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chien-Hsun, Tsai, Ho-Lin, Hwang, Weng-Sing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344614/
https://www.ncbi.nlm.nih.gov/pubmed/28772361
http://dx.doi.org/10.3390/ma10010001
Descripción
Sumario:This study aims to determine the effects of appropriate experimental parameters on the thermophysical properties of molten micro droplets, Sn-3Ag-0.5Cu solder balls with an average droplet diameter of 50 μm were prepared. The inkjet printing parameters of the molten micro droplets, such as the dot spacing, stage velocity and sample temperature, were optimized in the 1D and 2D printing of metallic microstructures. The impact and mergence of molten micro droplets were observed with a high-speed digital camera. The line width of each sample was then calculated using a formula over a temperature range of 30 to 70 °C. The results showed that a metallic line with a width of 55 μm can be successfully printed with dot spacing (50 μm) and the stage velocity (50 mm∙s(−1)) at the substrate temperature of 30 °C. The experimental results revealed that the height (from 0.63 to 0.58) and solidification contact angle (from 72° to 56°) of the metallic micro droplets decreased as the temperature of the sample increased from 30 to 70 °C. High-speed digital camera (HSDC) observations showed that the quality of the 3D micro patterns improved significantly when the droplets were deposited at 70 °C.