Cargando…

Zinc Transporter 3 (Znt3) as an Active Substance in the Enteric Nervous System of the Porcine Esophagus

Zinc transporter 3 (ZnT3), a member of the SLC 30 zinc transporter family, is involved in the transport of zinc ions from the cytoplasm into synaptic vesicles or intracellular organelles. The aim of the present study was to investigate for the first time the percentage of ZnT3-like immunoreactive (Z...

Descripción completa

Detalles Bibliográficos
Autores principales: Wojtkiewicz, Joanna, Makowska, Krystyna, Bejer-Olenska, Ewa, Gonkowski, Sławomir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344935/
https://www.ncbi.nlm.nih.gov/pubmed/27796869
http://dx.doi.org/10.1007/s12031-016-0854-0
Descripción
Sumario:Zinc transporter 3 (ZnT3), a member of the SLC 30 zinc transporter family, is involved in the transport of zinc ions from the cytoplasm into synaptic vesicles or intracellular organelles. The aim of the present study was to investigate for the first time the percentage of ZnT3-like immunoreactive (ZnT3-LI) neurons in the enteric nervous system (ENS) of the porcine esophagus and denotation of their neurochemical coding. Routine double- and triple-immunofluorescence labeling of cervical, thoracic, and abdominal fragments of esophagus for ZnT3 with protein gene product (PGP 9.5; used as pan-neuronal marker), nitric oxide synthase (NOS), somatostatin, vasoactive intestinal peptide (VIP), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), and galanin (GAL) was performed. The percentage of ZnT3-LI neurons in myenteric ganglia amounted to 50.2 ± 4.7, 63.4 ± 8.3, and 77.1 ± 1.1 % of all PGP 9.5-like immunoreactive neuronal cells in cervical, thoracic, and abdominal esophagus, respectively. In submucous ganglia, these values in particular parts of esophagus amounted to 46.3 ± 6.3, 81.0 ± 8.1, and 74.4 ± 4.4 %. Znt3 co-localized mainly with VAChT, NPY, GAL, NOS, and VIP, but the degree of co-localization depended on the “kind” of enteric ganglia and part of esophagus studied. The obtained results suggest that both ZnT3 and zinc ions may play important and various roles in the neuronal regulation of esophageal functions.