Cargando…
An eigenvalue localization set for tensors and its applications
A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li et al. (Linear Algebra Appl. 481:36-53, 2015) and Huang et al. (J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the minimum eigenvalue of [Formula: see text] -t...
Autores principales: | Zhao, Jianxing, Sang, Caili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344962/ https://www.ncbi.nlm.nih.gov/pubmed/28337052 http://dx.doi.org/10.1186/s13660-017-1331-1 |
Ejemplares similares
-
A new Z-eigenvalue localization set for tensors
por: Zhao, Jianxing
Publicado: (2017) -
Tensor eigenvalues and their applications
por: Qi, Liqun, et al.
Publicado: (2018) -
A new S-type eigenvalue inclusion set for tensors and its applications
por: Huang, Zheng-Ge, et al.
Publicado: (2016) -
Two S-type Z-eigenvalue inclusion sets for tensors
por: Wang, Yanan, et al.
Publicado: (2017) -
A new S-type upper bound for the largest singular value of nonnegative rectangular tensors
por: Zhao, Jianxing, et al.
Publicado: (2017)